
zo6sz6

Object-Oriented Control System Design Using On-Line Training

of Artificial Neural Networks

Final Report

Grant No. NAG3-1661

r_

Y,,-" j _j -- -/_

December 01, 1996 - April 30, 1997

(FINAL REPORT)

• _ . .4 V

Howard University/NASA Lewis Cooperative
Research Studies

Mr. Donald Noga
Technical Officer

Ahmed Rubaai, Dr. Eng.

Principal Investigator

Associate Professor of Electrical Engineering

Howard University

College of Engineering, Architecture and Computer Sciences

Electrical Engineering Department

2300 6th Street, Northwest

Washington, DC 20059

E-mail: rubaai@scs.howard.edu

TABLE OF CONTENTS

Abstract .. i

Introduction .. i

Structure .. 2

Modelling .. 3

Dynamic Learning .. 5

Neural Control System Design .. 8

Simulation .. 9

Conclusions ... 10

Acknowledgement ...

References ..

11

11

Object-Oriented Control System Design Using On-Line Training
of Artificial Neural Networks

Ahmed Rubaai, Member, IEEE

Electrical Engineering Department
Howard University

Washington, DC 20059
E-maih rubaal@scs.howard.edu

ABSTRACT

This report deals with the object-oriented model development of a neuro-controller design for

permanent magnet (PM) dc motor drives. The system under study is described as a collection of

interacting objects. Each object module describes the object behaviors, called methods. The

characteristics of the object are included in its variables. The knowledge of the object exists within its

variables, and the performance is determined by its methods. This structure maps well to the real world

objects that comprise the system being modeled. A dynamic learning architecture that possesses the

capabilities of simultaneous on-line identification and control is incorporated to enforce constraints on

connections and control the dynamics of the motor. The control action is implemented "on-line", in "real

time" in such a way that the predicted trajectory follows a specified reference model. A design example

of controlling a PM dc motor drive on-line shows the effectiveness of the design tool. This will therefore

be very useful in aerospace applications. It is expected to provide an innovative and noval software

model for the rocket engine numerical simulator executive.

L INTRODUCTION

Complex systems such as airplanes, automobiles, rocket engine, and so on are often composed of hundreds

or even thousands of objects. To ensure accurate modeling, an enormous number of state variables and behaviors

for system components must be controlle_ Because all necessary controlling features are built in, instead of being

accessedthroughcall statements, the model is compact and readable, making it much easier to develop, maintain

and enhance.

Object-oriented model development is currently a popular soft-ware paradigm that is gaining wide

acceptance because it allows us to build rapid prototypes of system model and add details as our knowledge of

the s3"stem models under study increases [1-3]. The application of object oriented programming to power system

simulation, analysis, education and control have been explored in this field [4-8]. The modeling techniques

presented drew heavily on object-oriented technology while leaving open the degree to which object-oriented

languages and/or data-bases would be employed in actual implementation. The feasibility of using physical

objects as the basis for distributed message passing on-line network applications was also demonstrated. This

work indicates that all network analysis programs may be designed with object orientation.

Motor drives are complex control objects. There are risks in replacmg conventional control with adaptive

control as this requires identification of an on-line linear model. To ensure good performance of adaptive control,

several parameters must be chosen. A design tool is necessary to adapt to the uncertainities of the motor

dynamics and in addition to learn about its inherent nonlinearities.

In this report, an object-oriented motor drive control design tool is proposed. It integrates modelling,

learning, design, analysis and graphics user interface in one package. This facility can be conveniently used to

study motor dynamic behavior and develop modern control algorithms. The control system design tool is a

comprehensive package integrating neural control system design and learning processes. It is a flexible design

environment capable of learning the unknown nonlinear dynamics of different motors, analyzing and designing

different control strategies. These include noise rejection, uncertainities of motor dynamics and closed-loop

systems.

The neural control system design consists of a 3 layer Feed-forward Artificial Neural-Network (FANN)

with hidden layers. Each hidden layer is capable of housing an arbitrary number of neurons. It is possible to

specify an arbitrary sigmoid activation function and its derivatives for the neurons in any given hidden layer.

The control signal is generated in such a way that the trajectory follows a specified reference model.

II. STRUCTURE

The object-oriented motor drive control system design tool, as shown in figure 1, is comprised mainly of four

parts: motor modelling, dynamic learning, neural control strategy and controller optimization. The design is based

on motor types and knowledge base including object models, a control library and a database. Each motor or

controller component is treated as an object which consists of data and a source code. Complete system models

can be built by connecting objects, as in motor drives.

MotorTypes

PMdeMotor

DesignPro_ss

MotorMMdlmg

ID]mmicletmiag

_ NounalCotlrolSD'lem

Ka0wledgeBate

[ObjectmMels

Dtabue

De_
ConUoUerOpfimizatio, Controllibruy

Fig. 1. DesigaStricter,

III. MODELLING

A motor drive system is a combination of related components such as motor, high speed switching converter

and control systems. Using the design tool, control strategies and performance studies become extremely

convenient. Each component of both motor and control systems is treated as an object, and a complete system

model can be built by connecting objects. If several objects share the same data or equations (methods), these can

be stored in class, rather than creating a separate object for each. This class is saved m a knowledge base. The

core of the knowledge base consists of mathematical models of objects.

A complete model of a PM dc motor and its control system was constructed using the design tool. The

schematic diagram of the model is shown in figure 2. The structure of the model is based on the following: 1) the

choice of "C" as the implementation language, 2) the use of object-oriented techniques in the resultant

implementation, and 3) the use of D_aaamic Back-Propagation (DBP) learning algonthm to train the artificial

3

neuralnetworkon-line.Thefollowingisa brief description of the main components of the developed model:

• Subsystem "A" encloses a system for calculating the desired motor speed at any time instant. This function

is performed for each reference speed track.

Subsystem "B" encloses a system for : 1) calculates the instantaneous terminal voltage that forces the motor

to follow the reference model. This function takes the 3 by 1 matrix that contains the motor speeds at 3

successive time instants and returns the desired voltage for the motor to track the reference model, and 2) uses

the instantaneous terminal voltage, and the motor speeds at the past two instants to compute the actual motor

speed. This function takes the 2 by 1 matrix of the motor speeds at 2 successive time instants, the network

approximation to the terminal voltage, and returns the actual speeds at the next instant.

Subsystem "C'" encloses a system that takes the input vector to the network and computes: 1) the input to

all hidden layers. This function takes the output matrix, of the previous hidden layer, the weight and bias

matrices that are between the previous and the current (receiver) hidden layer and returns the input matrix

to the current hidden layer, 2) the derivatives of the input to all hidden layers. This function takes the matrix

of inputs to the current hidden layer and computes their derivatives, and 3) the output of all hidden layers.

This function takes the matrix of inputs to the current hidden layer and computes the output matrix

Subsystem "D" encloses a system that contains the systems with Subsystem "C", and: 1) computes the

partial derivatives of the network output with respect to its parameters. This function returns network

output to a given input matrix and also computes the partial derivatives of each network output with respect

to its adjustable parameters, and 2) updates the weights and biases of the network using the DBP

algorithm.This function takes the network parameters, and the error matrix as its input. It updates the

weight and bias matrices according to the DBP algorithm.

/,\"

PM DC Motor

rotorMMl

TBKEmmfConst

ArmResist

DampConst
Torque Const
AT

bsystem B

ninputs
Lrate
UWsize

farm3

Matrix

nrows

ncols
dam

_ights

Matrix
I1rOWS

biases

, 311•
I psigFunc I

Subsystem C
1 Matrix

rl rows

ncols
data

partlai_dertvativesSubsystem D

r t

III RefModel
I

| L_

Subsystem A

q
q

Figure 2. Object Model for the Motor Drive Control Structure

IV. DYNAMIC LEARNING

The first stage m learning is to choose the neural configuration. The neural network considered here is a

feedforward network vdth sigmoid functions. This class of neural networks is well known and easily implemented

under real-time conditions. The network configuration (the number of hidden layers, and the number of neurons

m each hidden layer) was

5

chosen heuristically on a trial and error basis. Neither the number of hidden layers nor the number of neurons in

each layer are known a-priori. However the number of neurons in the input and output layers of the FANN are

fixed by the PM dc motor dynamics and the discretization scheme used in this report. The Dynamic Back-

Propagation (DBP) training algorithm is used to perform the real-time identification and control of the PM de

motor drive. The DBP algorithm is a straight-forward extension of the conventional (static) Error Back-

Propagation Training Algorithm, applied to dynamic systems. It was first introduced by Narendra and

Parthasarathy, [91, and is based on the principle of the minimization of a cost function of the error between the

desired output and the actual output of a Feed-forward Artificial Neural Network (FANN). The minimization

is achieved by varying the adjustable parameters of the FANN in the direction of the gradient of the cost function.

Figure 3, shows the architecture of a 3 layer FANN with no neurons in the input layer, and n, neurons in each of

its ith hidden layers. The FANN is a non-linear transformation of u(k) _ R_° to y(k)_ R_, where u(k) = [ul(k)

th(k) ... u,0(k)] r, y(k) = Lvl(k) y:(k) ... y,3(k)] T and yd(k) = LVdl(k)y_2(k) ... y_(k)] r is the desired output vector

at time t = kAT. Each neuron in the ith hidden layer of the network consists of a nonlinear mapping, that is

usually chosen to be a sigmoidal function of the form y,(x) = (1 - exp(-x))/(1 + exp(-x)).

where, W_, b_, W2, b_, and V_, 19 are the weight matrices and the bias vectors of the network. In the DBP

algorithm, it is useful to rearrange the elements of the weight matrices and bias vectors into a vector, 0, of

adjustable parameters of the network. The cost function in the DBP algorithm is chosen to be:

k n3

.I(o)- ? .:-., .:

The parameter T, is referred to as the update window size, and equals the number of time instants over which the

gradient of J is computed. The DBP algorithm begins by initially assigning small randomly chosen values for

the weights and biases. The training is terminated when,]ly(k) - yd(k)tl falls below a user-specified tolerance, for

some k. The most important step in the DBP algorithm is the computation of the partial derivatives of each of

! l ,

Y_

bl , '

Z
V• V Z • y8

Fig. 3 Architecture of a 3 Layer FANN

the outputs of the network with respect to each of its adjustable parameters. These partial derivatives are used

in computing the gradient of J, every T instants. Details of the computation of the partial derivatives are not

addressed in this paper and are given in earlier work [10,11]. In this paper, attention will exclusively be focussed

on 3 layer feed-forward artificial neural networks. The symbol, Nux _, as used in this paper will denote such a

network with i inputs, j neurons in the first hidden layer, and I neurons in the last hidden (output) layer. The feed-

forward nature of the network enables easy computation of the partial derivatives.

7

V. Neural Control System Design

Figure 4 shows the general implementation of the control system design. This system includes the reference

model, the system under control (PM dc motor), and the dynamic neural network. The discrete model of the

system under control is given in earlier work [10], and has the following form:

c0(k+l) = cto(k) + 13to(k+l) + ysign(to(k)to2(k))

+ 6sign(to(k- 1)to2(k- 1)) + _vt(k) (2)

where vt is the terminal voltage, g, 13,y, 8, and _ are functions of the motor parameters, in addition to the

sampling interval and the load torque. The controller input vt(k) at time step k can be approximated as a function

ft.) of the shaft speed to(k) in the form

vt(k) =](to(k+l), to(k), to(k-l)) (3)

_ ci(k)

Figure 4. Neural Control System Design

8

A FANNisgainedon-linetoapproximatefl'), as a function of its three input segment. In this case, the

function approximated also equals the terminal voltage. The controller is designed to vary vt(k) in such a way that

the speed to(k) can follow a specified reference trajectory tom(k) for all k. Once the desired trajectory of the speed

tom(k) is specified, the reference model ger, erates the corresponding tracking residual r(k). The following reference

model is selected.

tom(k+l) = 0.6 tom(k) + 0.2 tom(k- 1) + r(k) (4)

where r(k) is the bounded input to the reference model, and the constant coefficients are specifically chosen to

make the unforced system asymptotically stable. Assuming the tracking error is small, the shaft speed at the

(k+l)th instant can be predicted from;

6_(k+l) = 0.6 to(k) + 0.2 to(k-l) +r(k) (s)

This approximation to to(k+ 1) is used as the input to the FANN along with to(k) and to(k- 1). The network output

f_ (6_(k+ 1), to(k), to(k- 1)), is computed and compared with vt(k), and the resulting error is used to tram the FANN

on-line. In the limit as k -_,f_ (G(k+l), to(k), to(k- 1))-vt(k)), the control input to the dc motor, that results in

to(k) approaching tom(k).

VI. SIMULATION

When the object model is built and the control system is applied, closed-loop system simulation can be

performed. To evaluate the closed-loop performance, trajectory control under several speed tracks, are

investigated. In this case, a sinusoidal reference track is considered.

9

tom(k) = 10 sin2r_kAT + 16 sin2nkAT (6)

The FANN is gamed on-line. The results are given in figures 5 through 10, which all show snapshots of the

lcammg process. Thus, these figures provide an indication of how well the network identifier succeeds in learning

(emulating) the nonlinear dynamics of the PM dc motor. It is clear from figures 5 through 10 that the tracking

accuracy improves gradually with time. It is believed that improved performance can be obtained by further

training of the network.

VII. CONCLUSIONS

The object-oriented control system design tool is an effective computer environment for applying and

developing neural control schemes to motor drives. It integrates modelling, learning, design and simulation,

and graphics user interface in one package. Motor modelling, parameter adjustments, and controller selection,

can therefore be performed on-line. This design tool is an open-ended environment which can easily be extended

due to the use of object-oriented programming and a knowledge base.

Object-oriented design technique can be used to develop a software model for the rocket engine numerical

simulator executive. The model will be iterative and incremental. This will involve successive refinement of an

object-oriented structure over each release to the next iteration of analysis and design. It is incremental in the

sense that each pass of rocket engine numerical simulator and analysis and design cycle will lead to gradual

refinement.

10

ACKNOWLEDGEMENT

This work is supported by NASA Le_is through grant number NAG3 - 1661. Mr. Donald F. Noga. Technical

Officer.

REFERENCES

[11 G. Booch, Object Oriented Design with Applications, The Benjamin / Cummings Publishing ompany, Inc.,

1991.

[2] B. Meyei', Object-Oriented Software Construction, Prentice Hall International, 1988.

[3] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, Object-Oriented Modeling and Design,

Prentice Hall, 1991.

[4] F.L. Alvarado, R. H. Lasseter and Y. Liu, "An Integrated Engineering Simulation Environment", IEEE

Transactions on Power Systems, Vol. 3, pp. 245-253, February 1988.

151 S. Liu and S. M. Shahidehpour," An Object-Oriented Power System Graphics Package for personal

Computer environment", IEEE Transactions on Power Systems, Vol. 8, pp. 11054-1060, August 1993.

[61 M. Foley, A. Bose, W. Mitchell and A. Faustini, "An Object Based Graphical user Interface for Power

Systems", Voi. 8, pp. 97-104, February 1993.

[7] J. Britton, "An Open, Object-Based Model as the Basis of an Architecture for Distributed Control

Centers", IEEE Transactions on Power Systems, Vol. 2, pp. 1500-1508, Nov. 1992.

11

[8] M.Foleyand Bose, "Object-Oriented On-Line Network Analysis, IEEE Transactions on Power Systems,

Vol. 10, pp. 125-129, February 1995.

[9] K.S. Narendra and K. Parthasarathy, "Gradient -Methods for the Optimization of Dynamical Systems

Containing Neural Networks," IEEE Trans. Neural Networks, Vol. 2, No. 2, pp. 252-262, March 1991.

[10] Ahmed Rubaai and tL Kotaru, "On-Line Identification and Control of a DC Motor using Dynamic Back-

Propagation Neural Networks", Presented at the 1995 IAS Annual Meetings, paper No. TE95-20,

Oct. 8-12, Orlando, Florida.

[11] Ahrned Rubaai and M.D. Kankam," Adaptive Real- Time Tracking Controller for High Performance

Induction Motor Drives Using Neural Designs," 1996 IEEE/IAS Annual Meetmg,Vol. 3, pp. 1709-

1717, San Diego, California, Oct. 6-10, 1996.

12

30

25

I 20
I

II

-15
0

Fig.

Angular Speed Tracking After 50 Epochs (10 Seconds)
I I I I

X

x X
X x
X x
X X
X X
X X

X
X
X
X
X
X

I L _ J J"

2 4 6 8 10

Time (Seconds)

5 Speed Control of a Sinusoidal Reference Track (i0 Secs.)

2

13

20

15

10

I
II
- 5
(_
:3

< 0

II -5

U

_ -10

o-
lD
_ -15

-20

-25

-30

Angular Speed Tracking After 100 Epochs (20 Seconds)
1 I I

X

X
X
X
-X
X

X
X

X X
X
X

I I I I I

10

Fig. 6 Speed

12

Control

14

of a

16 18

Time (Seconds)

Sinusoidal Reference Track

20

(20Secs.)

22

14

25
Angular Speed Tracking After 150 Epochs (30 Seconds)

I t I I

I
I

II

<

II
v,
¢J
a_

i-

8
(-
_)
I,,.

.$
n,,

20

15

10

5

0

-5

-10_t

-15 /

-20 -

-25
20

X X
X X
X X

-X. X

I I I I 1

22 24 26 28 30
Time (Seconds)

32

Fig. 7 Speed Control of a Sinusoidal Reference Track (30 Secs.)

15

25

20

Angular Speed Tracking After 300 Epochs (60 Seconds)
! I I I

X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

-25 I t
50 52 54

Fig. 8 Speed Control of a

56 58

Time (Seconds)

Sinusoidal Reference Track

6O

(60 Secs.)

62

16

25
Angular Speed Tracking After 450 Epochs (90 Seconds)

I I I I

20

15
I
!

II

-_ 10
-!

<
5

. 0

O

t,..,

I- -5
8
t-

_ -10

-15

-20

-25
80

Fig. 9 Speed

X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

82 84

Control of a

86 88

Time (Seconds)

Sinusoidal Reference Track

90

(90 Secs.)

92

17

3O
Angular Speed Tracking After 1050 Epochs (210 Seconds)

I I I I

25

20
I
I
I

II
15

:3

< 10

n 5

_ 0

-5

rr
-10

-15

1

X
X
X
x

-20
2O0 202 204

Fig. I0 Speed Control of a

x
X
X
X
X
x
X
X
X
X
X
X
X
x
x
X
X

206 208

Time (Seconds)

Sinusoidal Reference

210 212

Track (210 Secs.)

18

